蜜臀传媒,国产 欧美 日韩,久久无码精品一级A,老色驴

返回列表頁

燒結(jié)升溫速率對低溫共燒陶瓷基板性能的影響

瓷基板性能

0
引    言


低溫共燒陶瓷(low temperature co-fired ceramic,LTCC)微波多層電路基板具有工作頻率高、集成密度高、耐高溫高濕、可集成無源元件和有利于實(shí)現(xiàn)微波信號耦合或隔離等獨(dú)特的技術(shù)優(yōu)勢,廣泛應(yīng)用于通信、航空航天、軍事、汽車電子、醫(yī)療等領(lǐng)域[1,2,3]。LTCC基板是在不同層生瓷帶上并行開展打孔、填孔、印刷等工藝,然后將不同層生瓷帶一起疊壓,最后一起燒結(jié)形成的立體互聯(lián)電路基板。


燒結(jié)是LTCC工藝中最為關(guān)鍵的工序之一,它直接影響陶瓷的顯微結(jié)構(gòu),進(jìn)而影響陶瓷各項(xiàng)性能指標(biāo)。燒結(jié)過程存在復(fù)雜的物理變化和化學(xué)變化,升溫速率、峰值溫度和保溫時(shí)間是燒結(jié)工藝中三個(gè)重要的參數(shù),尤其是升溫速率選擇不當(dāng),容易造成基板翹曲甚至開裂等問題[4,5]。


LTCC材料從組成和結(jié)構(gòu)劃分可分為三類,第一類是玻璃陶瓷體系,第二類是傳統(tǒng)意義上的玻璃-陶瓷復(fù)合體系,第三類是玻璃鍵合陶瓷體系[6]。目前應(yīng)用較為廣泛的是第一類陶瓷,以美國FERRO公司開發(fā)的A6-M為代表,其材料組分是鈣硅石(CaO·SiO2)添加B2O3組成,即Ca-B-Si-O體系。

WANG S F等[7,8]研究了 CaO-B2O3-SiO2系 LTCC陶瓷材料配方和制備工藝,發(fā)現(xiàn)玻璃添加劑可以改變陶瓷的燒結(jié)溫度,調(diào)節(jié)基板的收縮率。當(dāng)CaO-B2O3-SiO2的比例不同時(shí),燒結(jié)溫度和密度各不相同,并且介電常數(shù)和損耗也不盡相同。增加 B2O3的量有助于提高機(jī)械強(qiáng)度,但是會(huì)惡化介電性能。


龍承毅等[9]研究了 CaO-B2O3-SiO2系 LTCC 基板材料的制備及燒結(jié)工藝,結(jié)果表明:在一定的溫度范圍內(nèi),隨著燒結(jié)溫度的升高,基板的收縮率和密度不斷變大,介電常數(shù)則先變小再增大,而抗折強(qiáng)度先增大后減??;當(dāng)保溫時(shí)間延長時(shí),抗折強(qiáng)度不斷地減小。目前研究以組分和燒成溫度研究較多[10,11],而系統(tǒng)研究升溫速率對LTCC基板各項(xiàng)性能指標(biāo)影響卻鮮有報(bào)道。


本文針對Ca-B-Si-O體系國產(chǎn)MG60生瓷帶,采用LTCC工藝制作陶瓷基板,通過一系列不同的燒結(jié)升溫速率試驗(yàn),研究升溫速率對LTCC基板介電性能、翹曲度、附著力、抗折強(qiáng)度等關(guān)鍵性能指標(biāo)的影響,分析國產(chǎn)LTCC材料燒結(jié)升溫速率的影響機(jī)制,為LTCC工藝設(shè)計(jì)提供借鑒與參考。



1
實(shí)    驗(yàn)


1.1 實(shí)驗(yàn)流程


試驗(yàn)采用上海晶材新材料科技有限公司的生瓷帶(MG60),生瓷帶單層厚度117 μm(燒結(jié)后為96 μm左右)??拐蹚?qiáng)度測試樣品層數(shù)為30層,尺寸40 mm×4 mm(燒結(jié)后),介電性能、翹曲度、附著力測試樣品層數(shù)為10層,尺寸為50 mm×50 mm(燒結(jié)后)。



驗(yàn)證翹曲度,表層印刷銀電子漿料MP6012,銀電子漿料面積40 mm×40 mm(燒結(jié)后);驗(yàn)證附著力,表層印刷可焊接電子漿料MP6051,金屬膜層面積2 mm×2 mm(燒結(jié)后)。


生瓷帶層壓壓力20.68 MPa,溫度70 ℃,保壓時(shí)間10 min。采用馬弗爐,以1 ℃/min升溫至排膠峰值溫度(450 ℃),保溫120 min,之后分別以4 ℃/min、8 ℃/min、12 ℃/min、16 ℃/min從排膠峰值溫度(450 ℃)升至燒結(jié)峰值溫度(850 ℃),燒結(jié)峰值溫度保溫15 min。


1.2 表征方法

  • 采用日本 JEOL公司JSM 5600 LV掃描電子顯微鏡觀察不同溫度下的基板微觀結(jié)構(gòu);

  • 參照“GB/T 5594.4-2015電子元器件結(jié)構(gòu)陶瓷材料性能測試方法”中介質(zhì)損耗角正切值的測試方法,采用Agilent E8363A PNA分離式介質(zhì)諧振腔測試介電常數(shù)和損耗;

  • 翹曲度采用得力公司DL9502塞尺放在平整的玻璃平板上測量;

  • 參照“GB/T 17473.4-2008 厚膜微電子技術(shù)用貴金屬漿料測試方法-附著力測定”,用英國DAGE公司4000系列推拉力測試儀測試附著力;

  • 參照GB/T 6569-2006《精細(xì)陶瓷彎曲強(qiáng)度試驗(yàn)方法》中三點(diǎn)彎曲強(qiáng)度測試的方法,采用深圳三思縱橫公司UTM6203電子萬能試驗(yàn)機(jī)測試抗折強(qiáng)度。測試環(huán)境為溫度(23±2)℃,濕度40%~60%。



2
結(jié)果與討論



2.1 升溫速率對陶瓷介電性能影響


圖1為不同升溫速率燒結(jié)的陶瓷基板的介電常數(shù)(10GHz)及介電損耗(10GHz)。在升溫速率為4℃/min時(shí),介電常數(shù)為5.787,介電損耗為0.818×10-3。升溫速率為8 ℃/min時(shí),介電常數(shù)為5.788,介電損耗為0.821×10-3。4 ℃/min、8 ℃/min升溫速率燒結(jié)的陶瓷介電常數(shù)、介電損耗較接近。


隨著升溫速率的增加,當(dāng)升溫速率為12 ℃/min時(shí),介電常數(shù)降至5.667,介電損耗升至1.204×10-3。隨著升溫速率進(jìn)一步升至16 ℃/min,介電常數(shù)進(jìn)一步降低為5.636,介電損耗升至1.423×10-3。

圖片

圖1 不同升溫速率下燒結(jié)陶瓷的介電常數(shù)(10GHz)及介電損耗(10GHz) 

圖片

圖2 不同升溫速率下燒結(jié)陶瓷斷面SEM照片


介電常數(shù)和介電損耗隨升溫速率的變化規(guī)律與陶瓷的微觀結(jié)構(gòu)變化有關(guān)。圖2為不同升溫速率燒結(jié)陶瓷斷面,從圖2可知,升溫速率由4 ℃/min增加至16℃/min陶瓷內(nèi)部致密性逐漸變差,氣孔率逐漸增加。在升溫速率為4 ℃/min、8 ℃/min時(shí),燒結(jié)的樣品較致密。在升溫速率為12 ℃/min時(shí),內(nèi)部出現(xiàn)明顯氣孔。升溫速率為16 ℃/min時(shí),樣品斷面氣孔進(jìn)一步增加。


這是因?yàn)樵谂拍z完成后,由于升溫速率較慢,玻璃陶瓷材料隨著溫度的升高,晶??捎行虻厣L,隨著晶相的增加和晶粒的長大,內(nèi)部的氣孔可慢慢地排出,實(shí)現(xiàn)玻璃陶瓷材料的致密化。當(dāng)升溫速率過快時(shí),內(nèi)部的晶相未能充分地析晶、長大,內(nèi)部的氣孔不能及時(shí)排出,導(dǎo)致內(nèi)部氣孔增多。


根據(jù)復(fù)合材料介電常數(shù)混合定律,低介電常數(shù)物質(zhì)的引入會(huì)降低復(fù)合材料的介電常數(shù)。由于空氣的介電常數(shù)為1,低于CaSiO3、CaB2O4等晶相的介電常數(shù),因此隨著升溫速率增加,介電常數(shù)變小,介電損耗變大。



2.2 升溫速率對基板翹曲度的影響


圖3為不同升溫速率燒結(jié)基板的翹曲度和基板實(shí)物圖。

圖片

圖3 不同升溫速率下燒結(jié)基板的翹曲度及樣品翹曲照片


由圖3可以看出,當(dāng)升溫速率為4 ℃/min、8 ℃/min時(shí),基板翹曲度為0.2%左右,隨著升溫速率升溫至12 ℃/min、16 ℃/min,基板翹曲度也在逐漸增加,在16 ℃/min時(shí),翹曲度為0.83%。從基板翹曲度實(shí)物圖可以看出,升溫速率8 ℃/min時(shí)平整性較好,16 ℃/min時(shí)中間凸起明顯。


這主要是因?yàn)椴A沾刹牧吓c銀電子漿料共同升溫?zé)Y(jié),當(dāng)升溫速率為4 ℃/min、8 ℃/min時(shí),銀電子漿料的燒結(jié)收縮速率與玻璃陶瓷的燒結(jié)收縮速率較為接近,但是當(dāng)升溫速率增加至12 ℃/min、16 ℃/min時(shí),由于銀電子漿料的燒結(jié)收縮速率遠(yuǎn)大于玻璃陶瓷材料的燒結(jié)收縮速率[12],因此出現(xiàn)了燒結(jié)嚴(yán)重不匹配的現(xiàn)象,從而導(dǎo)致了基板拱起的現(xiàn)象。



2.3 升溫速率對膜層附著力的影響


圖4為不同升溫速率燒結(jié)膜層的附著力。由圖4可以看出,隨著升溫速率的增加,焊盤膜層附著力呈降低的趨勢。這是因?yàn)樯郎厮俾蕿? ℃/min、8 ℃/min時(shí),陶瓷燒結(jié)產(chǎn)生的液相較多,可以與金屬膜層形成較好的附著力,同時(shí)瓷體較致密,氣孔較少,金屬膜層與陶瓷間的氣孔少,因此結(jié)合力較高。


但是當(dāng)升溫速率增加至12 ℃/min、16 ℃/min時(shí),由于陶瓷燒結(jié)產(chǎn)生的液相含量降低,金屬膜層與陶瓷間的氣孔較多,降低了金屬膜層與陶瓷的結(jié)合力。由前文可知,隨著升溫速率的增加,金屬漿料與陶瓷的共燒匹配性會(huì)變差,這也可能會(huì)導(dǎo)致金屬膜層與陶瓷間結(jié)合力的降低。

圖片

圖4 不同升溫速率下燒結(jié)膜層的附著力   

            

2.4 升溫速率對基板抗折強(qiáng)度的影響


圖5為不同升溫速率燒結(jié)的基板抗折強(qiáng)度趨勢圖。升溫速率為4℃/min時(shí),陶瓷的抗折強(qiáng)度為177 MPa;升溫速率為8 ℃/min時(shí),陶瓷的抗折強(qiáng)度為175 MPa;升溫速率為12 ℃/min時(shí),陶瓷的抗折強(qiáng)度為165 MPa;升溫速率為16 ℃/min時(shí),陶瓷的抗折強(qiáng)度降為152 MPa。


由圖5可以看出,在升溫速率較低時(shí),抗折強(qiáng)度變化趨勢不明顯,但是在升溫速率增加至12 ℃/min時(shí),抗折強(qiáng)度出現(xiàn)降低的趨勢,在升溫速率進(jìn)一步增加至16 ℃/min,抗折強(qiáng)度進(jìn)一步降低。這主要是因?yàn)樵谏郎厮俾蕿? ℃/min、8 ℃/min時(shí),由于液相產(chǎn)生較多,可以很好地填補(bǔ)陶瓷顆粒之間的縫隙,陶瓷內(nèi)部較致密,陶瓷的抗沖擊能力較強(qiáng);在升溫速率為12 ℃/min、16 ℃/min時(shí),由于陶瓷內(nèi)部氣孔率的增加,降低了陶瓷的致密度,導(dǎo)致了陶瓷抗沖擊能力的降低,因此抗折強(qiáng)度降低。

圖片

圖5 不同升溫速率下燒結(jié)基板的抗折強(qiáng)度


2.5 升溫速率的影響機(jī)制


LTCC材料一般都是玻璃陶瓷或玻璃復(fù)合陶瓷粉的結(jié)構(gòu)[6],具有較多的玻璃成分,因此LTCC燒結(jié)屬液相燒結(jié)。當(dāng)LTCC材料在高溫段(≥500 ℃)時(shí),玻璃相軟化成黏性液體,將陶瓷粉粒拉近、緊貼,并使粉粒活化,在濃度差和界面張力的推動(dòng)下,促使基板中氣孔長大和玻璃流動(dòng),實(shí)現(xiàn)陶瓷體積收縮和基板致密化[13]。


單層LTCC生瓷帶通過流延成型,而多層生瓷帶通過等靜壓成型形成致密的坯體。LTCC基板經(jīng)過450 ℃的排膠峰值溫度后,坯體經(jīng)排膠發(fā)泡后較為疏松,其顆粒間大部分呈分開狀態(tài),顆粒間的空隙很多[14]。隨著燒結(jié)溫度的升高和時(shí)間的延長,特別是650 ℃后,從圖6的陶瓷粉體的DSC曲線可以看出,陶瓷粉體開始吸熱軟化,其玻璃化溫度為668 ℃,這期間陶瓷顆粒間不斷發(fā)生接觸和重排,大氣孔逐漸消失,物質(zhì)間傳質(zhì)過程逐漸開始進(jìn)行,顆粒間接觸狀態(tài)由點(diǎn)接觸逐漸擴(kuò)大為面接觸,固-固接觸面積增加,固-氣表面積相應(yīng)減少。

圖片

圖6 MG60玻璃粉的DSC曲線


隨著溫度不斷升高,傳質(zhì)過程繼續(xù)進(jìn)行,顆粒界面不斷發(fā)育長大,氣孔相應(yīng)地縮小和變形,形成封閉的氣孔。根據(jù)Lichteneker混合定則,氣孔的介電常數(shù)為1,兩個(gè)不同的相之間的相對介電常數(shù)符合以下公式:


Lnεm=V1Lnε1+V2Lnε2———————(1)


ε1和ε2分別為對應(yīng)相的介電常數(shù),εm為兩相混合后的介電常數(shù)。V1和V2為對應(yīng)相的體積分?jǐn)?shù)??梢钥闯?,氣孔率顯著降低相對介電常數(shù)。通過降低燒結(jié)升溫速率,能延長高溫階段時(shí)間,使得顆粒逐漸長大,氣孔有足夠時(shí)間遷移到顆粒界面上排出,致密度提高,介電常數(shù)提高,介電損耗降低。


燒結(jié)致密化是一個(gè)循序漸進(jìn)的過程,必須在一定的溫度和時(shí)間下才能完成。當(dāng)燒結(jié)升溫速率加快時(shí),收縮率曲線就會(huì)向高溫方向偏移[15],如果升溫速率過快,物質(zhì)間傳質(zhì)來不及完成,氣孔不能及時(shí)排出,陶瓷內(nèi)部的晶相不能充分地析晶、長大,從而導(dǎo)致陶瓷內(nèi)部氣孔增多、密度下降,進(jìn)而造成基板介電常數(shù)、損耗、平整度等性能指標(biāo)下降。



3
結(jié)    論


  • 燒結(jié)升溫速率顯著影響了LTCC基板的微觀結(jié)構(gòu)。隨著燒結(jié)升溫速率的提高,制備的陶瓷基板內(nèi)部氣孔增多,導(dǎo)致基板介電常數(shù)顯著降低,介電損耗增大,膜層附著力和抗沖擊能力變差。當(dāng)燒結(jié)升溫速率在8 ℃/min時(shí),制備的LTCC基板不僅氣孔率低,強(qiáng)度高,而且具有良好的介電性能和熱力學(xué)性能。


  • 燒結(jié)升溫速率會(huì)顯著影響銀電子漿料與玻璃陶瓷燒結(jié)收縮的匹配性。當(dāng)燒結(jié)升溫速率從4 ℃/min升高到16 ℃/min時(shí),翹曲度從0.20 %提高到0.83 %,導(dǎo)致陶瓷基板翹曲,銀電子漿料的燒結(jié)收縮速率與玻璃陶瓷的燒結(jié)收縮速率失配。


  • LTCC陶瓷基板的燒結(jié)需要適當(dāng)?shù)纳郎厮俾?。升溫速率?huì)影響燒結(jié)過程的傳質(zhì)、晶相長大,以及氣孔排出和致密化過程,因此會(huì)影響力學(xué)和電學(xué)性能。


深圳市金瑞欣特種電路技術(shù)有限公司

金瑞欣——專業(yè)的陶瓷電路板制造商

通過公司研發(fā)團(tuán)隊(duì)的不懈努力,現(xiàn)已成功研發(fā)微小孔板、高精密板、難度板、微型化板、圍壩板等,具備DPC、DBC、HTCC、LTCC等多種陶瓷生產(chǎn)技術(shù),以便為更多需求的客戶服務(wù),開拓列廣泛的市場。

在線咨詢在線咨詢
咨詢熱線 4000-806-106

? 2018 深圳市金瑞欣特種電路技術(shù)有限公司版權(quán)所有    技術(shù)支持:金瑞欣

返回頂部